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ABSTRACT

The problem of orbital parameter estimation using angles only observations is

examined. Direction cosine measurements, obtained from satellite passage of an

ea'th-based stationary planar radar beam, are assimilated by an extended Kalman

filter to improve estimates of a classical orbital element set. Several progressively

comprehensive orbital motion models are considered and compared. The relative

effectiveness of these models is illustrated by applying them to actual satellite

data.
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1. INTRODUCTION

Earth-orbiting satellites are catalogued in the form of orbital element sets. For

maximum usefulness of these catalogs to military and civil space systems, element

sets need to be updated as frequently and as accurately as possible. A nonlinear

filter was designed to perform these updates in near-real-time using observations

of satellites piercing a planar radar beam.

The filter predicts time-varying orbital parameters according to a non-linear

orbital dynamics model. This model includes, along with two-body Keplerian

motion, first order oblateness effects, both secular and periodic, simple decreasing

exponential atmospheric drag effects, and white noise on both the dynamic model

and the measured observations. This simple model is found sufficient to track

several selected satellites, with proper tuning of the filter. It should be noted that

even this simple non-linear model gives rise to comparatively complex filter

expressions.

Applying this filter to the orbit improvement problem helps meet the need for

continual determination of orbit decay, collision avoidance, satellite maneuvers,

etc. Current systems use a daily batch least squares differential correction method.



II. REVIEW OF LITERATURE

This research involves the integration of a simple, yet adequate, orbital

dynamics model with a necessarily suboptimal extended Kalman estimator. This

combination is applied to a geometrically unique detection scheme to provide near

real-time improvement of orbital elements for selected satellites. The accuracy

level under consideration falls under the umbrella of the general perturbations

problem of orbital mechanics, which is covered by numerous textbooks, a

sampling of which are referred to here [1-6]. In general, solution procedures

involve a gravitational potential function (earth oblateness, third body, etc.)

describing its contribution to the perturbation of a classical two-body Keplerian

dynamic model. The resultant expressions take the form of variations in some set

of orbital parameters. The two broad divisions of orbital parameter representation

in the literature are: 1) some set of 6 orbital elements which describe the orbital

path as a conic section and its orientation in inertial space, and 2) Cartesian

position and velocity of the orbiting body. The 6 classical orbital elements were

chosen for their physical significance in terms of how the satellite's orbit is being

affected by various perturbing fofces. The particular satellite propagation theory

being used here is loosely based on Brouwer's theory [7-11] for a future

comparison basis with existing orbit improvement procedures. The detection

scheme is an earth-fixed planar radar, the crossing of which causes power to be

reflected back to one or more of multiple earth-based receivers [ 12].

2



The most poorly modeled phenomenon affecting low earth orbits is the

problem of atmospheric drag. The overwhelming consensus [13-15] is that even

the most complex atmospheric density models can only be consistently accurate to

within about 20%. The Kalman filter incorporates a very simple decreasing

exponential density model [16] corrupted by nGise to track drag perturbations.

The extended Kalman filter is used in many situations for nonlinear parameter

estimation [17-19] and has been applied to the field of orbit estimation in the form

of orbital parameter improvement by differential correction techniques [20,21]. It

is known that such a filter works well when observational data are plentiful

[22,23]. However, proper application of such a filter to a highly nonlinear,

minimal observation scenario, such as that posed by the fixed radar plane detection

scheme, can also successfully "track" satellites.

3



1IH. TWO-BODY ORBIT FORMULATION

Two-body orbital motion for a spherical earth can be described by a set of six

parameters (three-dimensional, second order problem). Traditionally, these

parameters take one of two forms. One method describes satellite motion in terms

of Cartesian position and velocity. These vectors are propagated according to the

two-body non-linear equations of motion. The other takes advantage of the fact

that the equations of motion describe an orbital path which is a conic section.

which, for earth-orbiting satellites, is always an ellipse. Satellite motion can then

be analyzed as a mean angular displacement along that elliptical path. The second

method is used here because of the linear nature of the mean angular motion and

its clarity of physical significance.

A. KEPLER TWO-BODY DYNAMICS

The orbital path is described as an ellipse of fixed shape and size located in a

plane of fixed orientation with respect to the earth's inertial reference frame. The

quantities describing this path, the classical orbital elements [1], consist of five

constants and one time-dependent quantity. Two of the constants (a, e) describe

size and shape of the orbit, while the other three (i. Q2, co) orient the orbital plane in

space. The time-dependent quantity (v) pinpoints the actual location of the

satellite on the orbital path. These elements are (see fig. 3.1):

a (semi-major axis) - defines size of the elliptical orbit.

e (eccentricity) - defines shape (non circularity) of orbit.

4
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Figure 3.1. Classical orbital elements.
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i (inclination) - defines the angle between equatorial plane normal (K) and

orbital plane normal (W).

0 (longitude of the ascending node) - defines the angle between the vernal
equinox direction (I) and the point where the satellite crosses
the equatorial plane from southern to northern hemisphere
(ascending node).

co (argument of perigee) - defines the angle between the ascending node and
the satellite's closest point of approach (perigee).

v (true anomaly) - defines the angle between perigee and the satellite's actual
position.

The elliptical orbital path, is described by the equation of a conic section

a(l-e 2 )
r = -(3.1)

1 + e cos v

where r is the magnitude of the satellite's position vector at a specified v. In

general, v is nonlinear with respect to time, so the mean ano-naly M, which varies

linearly with respect to time for purely Keplerian motion, will be used as a filter

state instead. M is related to v through a quantity called eccentric anomaly E. It is

defined as follows (see fig. 3.2):

M = E - e sin E (3.2)

cos E -ce
cos v = -cs (3.3)

1 -ecosE

6



Eqs. 3.1-3.4 define the relationship between M and r.

The filter state vector will be

Xk =[ak ek ik Ok 0 k M ]T (3.5)

where

ak+1 ak
e,+,, ek

ik ik3.6)

=l =f(xk,Tk) (

W k+1 aT ±M
Lmk,, J Lai ýTk + Mk

and Tk is the time between observations. For the classical 2-body case, it can be

seen from eq. 3.6 that state propagation is a linear problem.

In order to improve the estimate of the state vector using available

observations, it becomes necessary to compare the states with the observables in a

common reference frame. Satellite position, which is implicitly a function of the

states through the relationship in eqs. 3.1-3.4, can be written

rcosv
r = rsinv (3.7)

where rP denotes a position vector in the orbital (PQW) reference frame (see fig.

3.1). The remaining states are used to transform satellite position from orbital to

inertial (IJK) coordinates using

7
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earth

Figure 3.2. Eccentric vs. true anomaly.

cwcOi - swsoci -socQ - cwosQci sK2si

C = cCosQ + sox2ci -s(osf + cocfci -cf2si (3.8)

scosi Ccosi ci

where cO = cos 0 and sO = sin 0 for brevity. (See App. A for development of

C v.)
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Then satellite position in inertial coordinates will be

r cos \1

r' =C rsinov (3.9)

[0j

Now, inertial satellite coordinates need to be related to a measurement in the site-

based reference frame.

B. OBSERVATIONS

The detection scheme modeled here is a fixed planar radar beam generated by

multiple continuous wave transmitters along a great circle path (see fig. 3.3). As a

satellite penetrates this beam, phase information is collected at one or more of the

receivers. Antenna geometry at each site makes it possible to compute direction

cosines, which are the pseudo-observations available for element set improvement.

These observables are (see fig. 3.4)

Cos cc P=

(3.10)
cos =3 -

IPI
where East-West cosine = cos a and North-South cosine = cos P (y can be

calculated from: cos 2 y+cos' P +cos' a = 1.)

9
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equator

Figure 3.3. Radar plane geometry.

We have

pcosa = E
(3.11)

p cos= 0. N

and

i = [cosld (3.12)

Cos

10



H (up)
N (Nort)

E (East)
p. E

Figure 3.4. Receiver site geometry.

is the vector of observables to be used for orbital parameter improvement. (See

App. B for development of i in terms of the orbital elements.)

The position vector in the site-based frame is

r H = C'r' (3.13)

where

[ c&cO ciso sf

CK= -soc(az)- sicos(az) c(az)co- s(az)siso s(az)cj (3.14)

s(az)so - c(az)sico -s(az)cO-c(az)stsO c(az)ct

and

i = latitude of receiver

= wo (t- t.)- Ion..

11



W = earth's rotation rate

t= time of last Greenwich crossing of vernal equinox

lon~it• = longitude of receiver

(See fig. 3.5)

(See App. A for development of C's).

Recapitulating,

z, = P(x, ,T,, ) (3.15)

both of which are, in general, nonlinear functions of the orbital elements x,.

Assuming for now that perturbations to the two body dynamics and observation

noise can be modeled as additive zero mean, white noise processes, the state and

measurement equations become

Xk =f(x k--, Tk-- ) + Mw k-

(3.16)

Zk =g(xIT.)+v,

Kalman filter equations are then

x %_ = f(i k-yiITk-)

P %-I= VPk_-X (T + Q

Gk= P% hT[p fIT + R]

12



Xk. =~~+G k zk- )

P*i, =(I - G f1)P•, (3.17)

K

N

,, ......... . ... ... ... ... • ..• ... ... .. ... .. ... . ....... .. .
S...............

I(evernal x

~euino!

Figure 3.5. Receiver site geometry.
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where

Q-=E[w, .w]

R = E[vkv:]

Pi =E ~i% -x•)(iv-xk )T]

af(Xk'Tk)

axk 
-

• = ag(xkT )

axk i
AX I[ kI~i•,r

=( Y~x,-./ITk-) (3.18)

Zk =LPcoscx

(See App. B for derivations of d1 and f1.)

In words, the actual observations, zk, are compared with computed

observations, iy_, (based on the classical two-body propagation model), resulting

in the Kalman filter innovations. These are multiplied by the filter gain, which is

based on the dynamic model and measurement uncertainties and used to produce

an improved estimate of the orbital elements.

14



C. RADAR PLANE INTERSECTION

Meaningful application of the observations to orbital element set improvement

requires the ability to predict subsequent penetrations of the radar plane by the

satellite in question. A simple way to do this is to define the satellite's position

vector in a coordinate frame referenced to the radar plane (See fig. 3.6). Then the

out of plane component (Z) of position can be checked for a value of zero,

yielding an in-plane condition.

Satellite position, readily available in orbital frame coordinates (rP) is

transformed to radar plane coordinates by performing two coordinate

transformations: one from orbital to inertial frame, the other from inertial to radar

plane frame, or

rx = CXCYPrp (3.19)

where rx denotes a position vector in the radar plane (XYZ) reference frame and

Sc r6cO cOrse so 0
C = -so co 0 (3.20)

L-so pcO -so p So coj

where

0 = W. (t-t.)-lonx,

e,, is the inclination of the radar plane to the equatorial plane

15



Ion, is the longitude where the maximum latitude of the radar plane occurs,
which describes the location of the X-axis )f the radar plane
reference frame. (See fig. 3.6).

(See App. A for development of CX-.)

K)

e~quator

Figure 3.6. Radar plane orientation.

Since the only component of satellite position of interest in determining radar

plane intersection is the Z-component, the expression can be further simplified to

16



rZ =[O 0 1]cXACfrp

=[-so vP~ce- seP seo+ corpP7]rcos \' (3.21)

+[-so, P2cO-So sP 5sOsCO + P ]r sin \'

where

C; = P4 P5 P6 (3.22)
_P7 P8 P9

The in-plane condition of relevance to the filter is that which falls inside the field

of viewv of one of multiple receiver sites, also placed along the great circle path

circumscribed by the transmitters. The time epoch of this condition is the time

close to which we expect to observe the satellite from one or more of the radar

plane receivers.

17



IV. DOMINANT PERTURBATIONS

Satellite orbital parameters deviate from Keplerian motion deterministically

and randomly due to many factors. Ignoring for now such intentional human-

caused phenomenon as plane change and stationkeeping maneuvers, the largest

natural contributor to parameter variations is the nonuniformiiy of the gravitational

field due to earth's oblateness. For low earth orbits, the next most significant

factor is atmospheric drag.

A. GRAVITY PERTURBATIONS

The largest contributor to perturbations to the '..lerian orbital elements

arises from the oblateness of the earth These perturbations take the form of a

combination of secular and periodic variations of the classical orbital elements.

Many solutions have been developed for this problem, each with its own strengths

and weaknesses. All the solutions, however, are based on the gravitational

potential

U =!g-O- 1{-j I n "JP, (sin 8) (4.1)

where

A. is earth's gravitational parameter

r is the distance of the satellite from earth's center

Jn are nth order zonal harmonics

18



P,(sin 5) are Legendre polynomials

5 is satellite declination

and are more or less complex depending on the order to which the terms of the

expression are carried. This expression for U already carries with it a degree of

simplification in that it assumes axial symmetry for the earth. In truth, the equator

is slightly elliptical, but the main effect is on the stability of geosynchronous

satellites, since their orbits are in the equatorial plane [3]. Further simplification is

accomplished by dropping terms for n _> 3. This is justified for medium accuracy

applications because of relative magnitudes of the J, terms

J 2 =1.0826 -10-

J3 = -2-10--

(4.2)

J 5 = -2O-10-

where J, successively decrease. So the simplified potential function is

U =- +H J (3 sin 2  - 1(4.3)

Defining R = J 2(3sin2 5-1) as the perturbing function, the variation of that

function with respect to each of the orbital elements is [ 4 ]

19



DR 3 R
aa a
aR 3J 2  [cosco(0+e cosv)(1-3sin2 i sin2 u)a-e =2(1 --e')r3

- sin' i sin 2u sin v(2 -,- e cos v)]
DR -3J2 -= _ sini.cosi.sin2 u
Di r,

DR = -3J22 i2sin2u
awo 2r 3

DR (4.4)

M=0

DR I dR
WM n dt

To develop a first order theory, the right-hand members of eq. 4.4 are

expanded in a Taylor series about the initial orbital element values, retaining only

the first term of the expansion, yielding expressions for the derivative of .-ach

orbital element with respect to true anomaly v. Integrating these expressions

yields an analytical first order solution in the form

x = Xo + 8,x(v)+8px(v) (4.5)

where

x = instantaneous orbital elements

x. = initial orbital elements

B5x = secular variations as a function of v

Sx = periodic variations as a function of v

20



All six orbital elements experience periodic variations. Hoe\ ever, onl Q. \

and M experience secular perturbations. These are

S=-31---2 [cos io,]2(\,- vo)

4p
2

S3J 2- 5sin 2 i.](V-Vo)

(4.6)

8MJ---1+ 1 -- -(1 3 sin 2 5.o)]Y (t -t.)

Note that 5,M is expressed in terms of independent variable t, which is the time at

which true anomaly is equal to the value of v in 5•0 and 5,0o. The periodic

variations in co and M do carry 1/eo terms which approach singularity for near

circular orbits. This can be explained by the fact that co and M are undefined for

circular orbits and ill-defined for near circular orbits. Fortunately, the combination

of wo + M obviates the singular condition by effectively forming one new orbital

element out of co and M.

Long term propagation of the orbital elements, assuming a drag-free

environment, is accomplished by applying only the secular variations, since

periodic variations will have no net effect on the elements over time. However,

the periodic variations will be seen later to come into play when observations are

assimilated into the orbital element improvement process. Inclusion of these

secular variations in the dynamic model yields

21



Xk.1 = f(xk ,Tk) (4.7)

where

ak

ek

ik

f(xk'Tk)= 3J'

2p 1

3J 2p[ 2 L2os~i )](Vk..-'k)

(4.8)

M +k I+ 2 (k-)(1-3 sin 2 8k)] Tk
Mkk

where

Pk ak (1 - e') is the semi-latus rectum of the orbit

J2 is the second order zonal harmonic (equatorial bulge).

The gravitational force model which gives rise to these secular variations is

relatively simple. It assumes that the earth is symmetric about its spin axis and

about the equatorial plane. Noteworthily, the first three mean orbital elements

experience no secular variation due to earth's oblateness.

22



It may be possible to maintain identification of some satellites using secular

variations alone. Continuous identification of a satellite, however. may depend

upon the application of the periodic variations to the mean elements at observation

times. These periodic variations are assimilated as an additive (superposition

assumed) adjunct to the existing dynamic model and therefore are not technically a

part of the propagation dynamics. The filter innovations resulting from a

comparison of observables with predicted states are then applied, via the Kalman

gains, to the mean elements, implying a prior removal of the periodic variations.

These periodic variations,to first order, and ignoring terms of the order of eo and

smaller, are

5ap = 3J 2P 2 sin 2 i. .cos[2(co0 + v)]

3J, 3 ) c -1 i" .cos(2w +\')
5e, _ I--sin' i. cos \'+-sin o2pe22p 4

+7sin, i .cos(2wo + 3')0
12

3J
5i P = ---- csin(2i )cos[2(wo + v)]

8pO

50cs3i2 o .sin[2(wo + v)]

5iŽP = 4--. cosi. sin[2(w. +v)] (4.9)

3pJ -5sin'i i.sin[2(co. +v)]
M 4p2. 2

23



B. DRAG PERTURBATIONS

Satellites traveling in the altitude regime below 600 km experience non-

negligible drag force due to atmospheric resistance [3]. This force is well

represented as

1 A
FD = I CD -PV2 (4.10)

2 m

where
m=mass of satellite

CD=2 is a dimensionless drag coefficient

A= effective cross sectional area of satellite

V= velocity of satellite with respect to atmosphere

p= local atmospheric density.

1. Atmospheric Drag Effects

To first order, drag force doesn't affect i and Q [6]. The main effects of

this drag force are to bring about secular decreases in a and e, i.e., to decrease the

size and eccentricity of the orbit. co and M also experience changes due to drag,

but these are negligible compared to the oblateness effects.

It turns out that

da CDA a (l+ecosEM(l_ -,t)E. (4.11)

where

24



d(1 - e cos E)

1+ecosE

d = !ýL (1-e')• cosi
n (4.12)

a a 3

and

de CDA pa(l-e2)(1 +ecosE)g (I cosE
dM= m (l-ecos (1E) cosE

CDA (1-ecosE Y23
2 paed Ie(I (1-ct)sin'E
2m O'+ecosE}

All quantities in these two expressions are well known (according to the simplified

model) except for atmospheric density p, the value of which is related to space and

time in a complex manner. Atmospheric models delivering as good as 15%

standard deviation are in the form of tables or very complicated empirical

formulae or both [13]. For simplicity, it is advantageous to use an analytical

function to model p. It is assumed that variations in p in the upper atmosphere

(150 km to 750 km) are a superposition of four individual variations [4].

The first variation is diurnal, or, daily. This fluctuation has to do with

change in solar flux intensity associated with moving from darkness to daylight,

and vice versa. Density, depending on latitude and altitude, may change by up to a

factor of 10.
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The second type is related to the 11 year solar cycle which is motivated

by intensity of sunspot activity. Maximum density, occurring at the peak of

sunspot activity, is roughly ten times the mean density.

A third variation is semiannual, with density falling to a minimum in July'

and a maximum in October, with a less pronounced minimum and maximum in

January and April, respectively. The range of this variation is, generally, less than

1/20 the range of the 11 year solar cycle.

The fourth type of variation is nonperiodic and unpredictable and is tied

to geomagnetic storms rising from solar flare eruptions. Atmospheric density may

increase by a factor of 10 from the geomagnetic quiescent value.

Over the short term (days), barring magnetic storms, the diurnal variation

dominates. However, over several years, the solar cycle has a more profound

effect on atmospheric density.

The modeling approach followed here was to start with a very simple,

even crude, atmospheric density model, including the above considerations as

necessary to achieve desired accuracy.

2. Simplified Drag Effects

First, simpler expressions for changes in a and e due to drag can be

developed by viewing these changes as a result of orbital specific energy being

extracted by drag force [14]. Specific energy of an orbit, which is conserved for

an unperturbed Keplerian orbit, can be expressed as

1V2  It _t

F: = -V_ ---= 9 (4.14)
2 r 2a
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The change in a for an incremental change in E" is then

2a2

da = 2 dc (4.15)
I.t

If it is assumed that most of the drag occurs near perigee (atmospheric density

exponentially decreasing with altitude), then

r = rp = a(1 -e) (4.16)

from eq. 3.1, and

V2r= p~a(2-r (4.17)

-p(l +e)

from eqs. 4.13 and 4.15. For a satellite moving through dv near perigee (see fig.

4.1), the specific energy extracted will be

Figure 4.1. Satellite moving through perigee.
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FDd•= -- •rdv
m

= ~!SŽ)P~rdv(4.18)I (ýDA ' pV2 d

Substituting eq. 4.17 into eq. 4.18 yields

dE = - I " -DA-)pP(l +e)dv (4.19)

Substituting eq. 4.19 into eq. 4.15 gives an expression for decrease in semi-major

axis due to a decrease in orbital energy

ia -(CDA )a2 (1 + e)pd\, (4.20)

Since the new c,-bit will pass through the same perigee point, all of da shows up as

a decrease in apogee radius, and

drP = da(1 - e) - ade = 0 (4.21)

by differentiating eq. 4.16. Solving for de gives

de = da (1 - e) = -(-- )a(1- e2 )pdva (4.22)
a

3. Atmospheric Drag Characterization

A crude model for variation of p starts with the assumption that

temperature and chemical composition of a gas remain constant [14]. Then,

density is directly proportional to pressure according to
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p = kP (4.23)

(Realistically, k is a function of temperature and chemical composition.) At an

altitude hz, the decrease in pressure accompanying an increase in altitude is

dP = -pgdh (4.24)

where g is acceleration of gravity. Since k is assumed constant,

1
dP= -dp (4.25)

k

Combining eqs 4.24 and 4.25 yields

dp
L= -kgdhP

P p

d= -kgf dh (4.26)
p. P0

p = Poe -ke,

So, in general, atmospheric density decreases exponentially with altitude.

Eq. 4.26 can be rewritten

p = poe. (4.27)

where p0 reference air density) and ho (density scale height) change for different

altitude regimes. For example, using standard fixed values of p from the "U.S.
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Standard Atmosphere, 1976," a reasonable fit can be made by applying the values

in Table 4.1 for the ranges of altitude shown.

Table 4.1. DRAG PARAMETERS.

Altitude JPo (kg/m3 ) zo (km)

80 km'<z<120 km 18.5 5.8

120 km<z<140 km 1.21x 10-3 11

140 km<z<200 km 3.00 x 10- 6  21
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V. THE RECURSIVE ORBITAL PARAMETER ESTIMATOR

An extended Kalman filter, designed for orbital parameter estimation, is based

on the earth-fixed radar plane detection scenario described in Chap. III (Also see

fig. 5.1). The filter propagates the orbital elements in time according to a first

order nonlinear dynamic model which takes into account the dominant

perturbations arising from earth oblateness and atmospheric drag. Upon receiving

observations, in the form of pairs of direction cosines, the filter calculates an

improvement to the current parameter estimate. The filter operates recursively as

observations become available. The filter is written in Matlab code and can be

found in App. C.

A. FILTER INITIALIZATION

The estimator is designed to receive two data files. One contains an initial set

of orbital elements along with subsequent pairs of available direction cosines (see

App. C). The other holds information about the receiver sites. Values of pertinent

constants are also set, as are the initial times necessary for orbit propagation and

estimation of observables.
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INPUT DATA

INITIALIZE KALMAN FILTER

PLANE

j 

>w 
NOYES

ITERATE TO IN-PLANE CONDITION

E STI ATELLT MESRMNTS

[APPLY STATE IMPROVEMENTS

MOEYES

OBEVTONO

Figure 5.1. Estimator flow chart.
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1. Input Data Files

Two input files are required for filter operation. One contains an initial

set of orbital parameters, along with subsequent sets of direction cosines. This

information is all tagged with corresponding times (see App. C). The last five

orbital elements occur in classical orbital element form, but, in lieu of semi-major

axis, orbital period is given. The conversion is simply

(5,1)

where Tsat is the period of the satellite. Note here the apparent disappearance of

earth's gravitational parameter pt.. This convenience is brought about by the use

of canonical units [1], where
DU3It,=1--1

Th 2

1 DU+= 6378.135 km and is earth's mean equatorial radius.

1 TUS= 13.44686 min and is the time it takes for a satellite traveling in a
circular orbit at a radius of 1 DU to travel 1 DU of arc length.

Canonical units are used in all filter calculations. The other input file contains

information on the receiver site locations,altitudes, and azimuths. The azimuthal

measurement indicates, for each receiver, the angular offset of its coordinate frame

from true north.
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2. Constants

The earth's apparent rotation rate is initialized as

(o, =.05883378 rad/TU (5.2)

The radar plane's inclination to the equatorial plane and the longitude of its center

line are, respectively,

0,v= 33.583100

Ion, = -101.31348' (5.3)

The radar plane is offset from earth's center by about 20 km, or

r,,= .0031 DUS (5.4)

3. Time

All times are given in Universal Coordinated Time (UCT) and converted

to TU~s for filter use. Tgwch,which is time elapsed since the Greenwich meridian

last passed the geocentric inertial I axis, is computed- from a reference angle

(measured from I to Greenwich) at 0 hrs, 1 Jan 92, of

0 Iwch =98.920250931' (5.5)

using the (o, given previously.
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4. Filter Matrices

The error covariance matrix P is initialized to reflect the level of

confidence placed in the accuracy of the initial orbital element set. The

measurement error covariance matrix R is set to

R =[ " 2 (5.6)

where a.Q = ,,a = .00020 reflects the uncertainty of the available direction

cosines.

B. STATE PROPAGATION

The filter states are propagated according to the two-body Keplerian orbital

dynamics perturbed by earth oblateness and atmospheric drag. The nonlinear state

equations are

ak- (- )a (1 +e)p(vk•- vk)
m

ek _(CDA~a(l-e 2)p(N, V)
i k

f(XI'Tk3J2 [cos(i )](Vk÷1 -Vk)

3J2 2

(ik + [ sin ik ](vk÷1 -vk) (5.7)2pk2  -kj

Mk +nk [+ (a 2-(1-3sin 8k) Tk

3 a5 k
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and are propagated at arbitrary increments of T. This is continud until a

crossing of the radar plane is detected by a sign change of the radar-plane-normal

component of satellite position.

C. RADAR PLANE INTERSECTION

Detection of a radar plane crossing calls a function which iterates to an in-

plane condition for estimated satellite position. This is accomplished using a

Newton-Rapson iteration on the expression for the plane-normal component of

satellite position. The iteration calls for a calculation of an approximate AM

which will drive rz to near zero. This is given by

AM = (5.8)

where, from eq. 3.21,

r, = XIr cos v+ X 2r sin v (5.9)

and

andr X) .
a(r cos v )GM = aM" rcosv+X
amrsmnam (5.10)

+ ýX-2 rsinv+X2 a(r sin v)
aM aM

Taking the individual derivatives yields
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aX• a(cos 0) a(sin 6)
a ", -= - P , sin 0 • rM - P4  sin O rr a 0

(5.11)

aX2  a(cos 0) a(sin 0)
am= -P 2 sin er P, sin 0er aM

where

a(cos 0) -Yam -,,ea-2 (sin 0)
aM

(5.12)
a(sin 0) -2 (Cos

aMN

and

a(r cos V) a sin E

aM 1 - ecos E
(5.13)

a(r sin N) a-l- -e 2 cosE

aM 1-ecosE

where

r cos x, = a(cos E - e)

rsin v = a-J -- e' sinE (5.14)

_E 1
DM 1-ecosE

This iteration is found to converge to within Z, < E in three to four iterations,

where = 10-.
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The function then determines whether the satellite is within the field of view

of one or more receiver sites by calculating the in-plane rx and r, components of

satellite position and checking the inequality (see fig. 5.2)

r. > cos 20 (5.15)

It should be noted here that the field of view needed to be opened up to pick up

some satellite observations by receivers at the edges of the radar plane.

Y

20~ 2OC :

W4thin field
of ye~y_,

X (Ion = 101)

Figure 5.2. Sensor field of view.

D. ASSIMILATION OF OBSERVATIONS

Once a satellite is in the field of view of radar plane coverage, the input data

file is checked for observations at or near its time of arrival. If a pair of direction
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cosines is available, then a measurement estimate is calculated according to the

development in App. B, where

Z= P/ (5.16)
[PN

• is also calculated according to App. B. The plant noise covariance matrix Q is

calculated using the squares of expected levels of uncertainty in each of the states.

For example, if the two-body problem is the dynamic model, then the Q matrix

would be

G~ 0 0 0 0 0

o 0 0 0 0
o 0 0 2  0 0 0
0 0 0(5.17)

C0 a 0 0
0 0 0 0 o,,, 0

0 0 0 0 0 oma

where a, are proportional to the magnitude of the largest unmodeled pei turbation,

in the two-body case, earth oblateness. So, for the two-body problem,

39



3Ja (1 e') sin i2 cos[2(w + v)]2p,

3J-2 (1- sin' i cos'+-sin 2 i.cos[2co+v]"2p 2 2P 4

c J2 sin 2i-cos[2(o-+ v)]
C , '8 p 2

3J2 n cos i. T,
2p 2  (5.18)

3j~, (5 ,2n 2--sini T
2 p 2 ( 23J--22 n 1- 3 sin2 i )(Il-e 2)Y2 T,

L 2p. 2

Now, the error covariance matrix can be calculated as

P ý-; = _P- + Q (5.19)

H is then calculated as given in App. B, making possible the calculation of filter

gain

G,= P fs HT(HjP_ HT +R)-' (5.20)

which is then applied to the residuals z-i to calculate improved orbital

parameters i k*.

It should be noted that, throughout the filter, the quantities v and E are needed

for various calculations. E is calculated fom M using Newton-Rapson iteration on

M = E-esinE (5.21)

and v is calculated by solving for
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v=osinE1-e' sinE (5.22)

then using

V [ cosE-e 1(5.23)
Li-c cos E5

to resolve the ambiguity.
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V1. RESULTS

This extended Kalman filter is designed to estimate the orbital parameters of a

satellite, given observables in the form of a pair of direction cosines obtained upon

the satellite's passage of an ear-th-fixed, stationary planar radar beam. One day's

worth of data for each of three satellites was obtained for filter testing and

adjustment. Results of the application of three successively more comprehensive

filter models are compared with each other.

The first filter models only two-body motion, the second adds secular

perturbations due to earth oblateness, and the third also includes periodic

perturbations due to oblateness as well as atmospheric drag effects. Each filter, of

course, models unknown perturbations as zero mean, white, Gaussian noise, in the

tradition of Kalman filtering. Unfortunately, none of the available satellite data

include an orbit in the drag regime. The filters will be compared in the areas of

radar plane time of arrival, a residual small sample statistic, and orbital parameter

estimation.

A. RADAR PLANE TIME OF ARRIVAL

With orbiting objects arriving at the radar plane on the order of every few

seconds, it is important that prediction of arrival times be fairly accurate. Current

methods yield accuracies of within a second. The best that can be hoped for under

the current detection configuration is about 0.25 second, which is the sensor time
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uncertainty. After some crude tuning of the three filters, a comparison of arrival

times for the three satellites is shown in Table 6.1, where At = t kx - ta,.

It can be seen that, in all cases and for all models, the first detection time after

the estimator is started up (which occurs on the order of 12 hours after filter

initiation) is always mispredicted by the filter by a time on the order of seconds.

However, it is seen that the secular and periodic models cut down that time error

by a factor of from three to four. Subsequent detections yield differences in time

between calculated and observed plane intersections of less than 1 second for a

one-orbit-later detection and between two and three seconds if detection occurs

next on the "backside" of the orbit (about a half day later). Although this is true

Table 6.1. OBSERVED VS. ESTIMATED TIMES OF ARRIVAL

At (sec) I 2-body Secular Periodic

Satellite 116 13.94 4.29 4.30

2.21 0.23 0.58

-3.64 -2.61 -0.63

-0.32 0.32 0.87

Satellite 117 15.18 4.76 4.78

0.78 -0.10 0.17

-0.13 -0.18 0.27

-0.69 -2.40 -0.93

Satellite 118 12.39 3.49 3.49

0.63 -0.01 0.21

-2.24 -2.03 -0.81

0.32 0.25 0.59
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for the two-body and secular cases, the incorporation of periodic perturbations

yields subsequent time differences of less than one second in all cases.

B. RESIDUAL SMALL SAMPLE STATISTIC

The filter residual is the difference between actual and estimated observations,

and, as such, is the basis for a good performance measure. The small sample

variance of the residual is calculated for each case as follows:
2 n 2 ý

I2 = _32 (6.1)
j=1 n

where

I X -- (6.2)
7 n

is the small sample mean, xi being the ith residual. Plots of these variances for each

case are shown in figs. 6.1 - 6.3.

It is evident that the residuals for the N-S direction cosines are always very

small. This is because this direction cosine is always close to 900 and the

geometry of the problem always forces the estimate of this direction cosine to be

very close to 900. However, the E-W (in-plane) cosines are more interesting to

observe. In general, the trend is toward smaller residual variances from

observation to observation and from simple to more complex dynamic model. The

only case where this does not hold true is for Satellite #117, where it can be seen

that the two-body model is sufficiently lost after approximately eight hours to

yield higher residuals than at the previous set of observations. Note that a "stack"
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of asterisks denotes several observations gathered at the same radar plane crossing.

which are then applied one at a time for parameter improvement.

It can be concluded from this limited residual data that, for the relatively short

times included in the data, the filter is performing acceptably.

C. ORBITAL PARAMETER ESTIMATION

The ultimate objective of this filter is to be able to predict what a satellite's

position will be at some future time. Hopefully, the filter is predicting plane

intersection times by accurately estimating orbital parameters. Figs. 6.4 - 6.6

show time propagating values of the four parameters that are expected to be

varying most with respect to their two-body propagation values. All three

satellites show similar results. In all cases, semi-major axis estimates differ

greatly from model to model. Eccentricity estimates for the two-body and secular

models are very similar, with the periodic model showing the greatest deviation.

All estimates are very' similar for the longitude of the ascending node, though,

between observations, the two-body model does not have a mechanism to

accurately propagate this element. Argument of perigee estimates are very close

between the secular and periodic models, while the two-body makes very little

correction to this parameter.

45



0.01-bod model xl0- 3  Secular variations<•0.015 2-ovmd!< _

= 0.01-
- 1.5L7

=0.005 -" - -:'- I --

.0- -

- 00
5 10 15 20 10 15 20

time, hours time, hours

< 2. .x10 •Periodic variations

d - • •Satellite #116
15 - * E-W direction cosine

• -1.5 .- -

o- N-S direction cosine
- 1- -

01 --

5 10 15 20

time, hours

Figure 6.1. Variance of residuals (sat. # 116).
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Figure 6.2. Variance of residuals (sat. # 117).
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Figure 6.3. Variance of residuals (sat. # 118).
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Figure 6.4. Orbital element estimates (sat. # 116).
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Figure 6.5. Orbital element estimates (sat. # 117).
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Figure 6.6. Orbital element estimates (sat. # 118).
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VII. CONCLUSIONS AND RECOMMENDATIONS

Orbital parameter estimation was attempted using an extended Kalman filter

for each of three orbital dynamic models. Observations were angles only and

made roughly twice a day per satellite passing through the radar plane. It was

found that the two-body orbital model, including secular and periodic variations

due to earth oblateness, was able to predict subsequent radar plane crossings to

within a second of actual crossings.

The filter, which includes a crude model for atmospheric drag effects, was not

tested on any satellites in the drag regime. Future research should include data

from satellites with altitudes less than 600 km. Also, longer term data should be

obtained to check filter performance over the long haul and also to see if the filter

could track longer term disturbances or perturbations to the orbit under

consideration.

Tuning of the filter could also be accomplished by obtaining a larger data base

of satellite orbital elements and corresponding observations. This could be done

manually, but it would be more exciting to see if an artificial neural network could

be designed and trained to accomplish the same task.
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APPENDIX A

COORDINATE TRANSFORMATIONS

The calculations and algorithms presented in this paper necessitate describing

vectors in several different coordinate frames. These frames are all orthogonal.

Transformation of a vector from one reference frame's coordinates to another's is

accomplished using direction cosine matrices (DCMs).

Reference Frames

The reference frames of interest are as follows (see fig. A. 1):
Geocentric inertial (IJK) - The I vector points inertially in the vernal equinox

direction, with I and J lying in the equatorial plane, and K
piercing the north pole (coincident with earth's spin axis).

Orbit-fixed (PQW) - The orbital plane is the fundamental plane, with P
pointing to perigee (point of closest approach), Q is the semi-
latus rectum direction, and W is the orbit-normal (also orbital
angular momentum direction).

Radar plane (XYZ) - The radar plane is the fundamental plane, with X
pointing to the maximum north latitude point, Y lies in the
equatorial plane, and Z is the radar plane normal.

Site-based (HEN) - H is local vertical, E is east, and N is north. The origin
coincides with the radar site location of interest.

Direction Cosine Matrices

Three DCMs are developed here, performing one orthogonal rotation at a

time, then combining the rotations.
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IJK (Geocentric inertial) PQW (Orbit-fixed)

KJ

XYZ (Radar plane) HEN (Site-based)

X H/

Figure A.1. Reference frames.

Orbit-fixed to Inertial

Satellite position is most simply expressed in orbit-fixed coordinates,

but for comparison with earth-fixed quantities, it is useful to transform both to an
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intermediate reference frame. The inertial coordinate frame (in this case,

geocentric inertial) is the obvious choice. Fig. A.2 shows the individual rotations

required to transform a vector from orbit-fixed to inertial coordinates.

cos Q sin Q 0
• P rotl = -sin- cosK2 0

rt 0 0 1

0 0

Q rot2 0 Cos i sin i
S0 -sin i cos i

Q cosco sin°o 0
P rot2- -sinco cosco 0

oo 0 0 1

Figure A.2. Orbit-fixed to inertial rotations.
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Combining the rotations yields

C = [rot3][rot2][rotl]

cocX92 - sssQci c(os2 + sox2ci s(si1 (A.1)

= -SoQX2 - c(OsQci -s(osf2 + cox cci cwosi

sosi -sicQ ci j

Because the transformation is orthogonal,

cOcKc - scosf2ci -sWc2 - ccosQci sfisi 1
C YP ==[C f c Cos + saocxci -sosQ + coc2ci -sict

scosi ccosi ci j.

(A .2)= P4 P5 P6
-P7 P P9

Inertial to Site-based

Fig. A.3 shows the individual rotations required to transform a

vector's coordinates from the inertial to a site-based reference frame. Rotation #1

keeps track of earth rotation. Rotation #3 points out the fact that the E and N

vectors are not truly east- and north-pointing. E is in fact tangent to the great

circle circumscribed by the radar plane, and N is orthogonal to E in the local

horizontal plane.
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4cos4 sin 01O
rotl= -sino coso 0

where •= -(t-to)+ lonA,

wt, is earth's rotation rate

t. is time of last Greenwich crossing of I axis

Ion,,, is longitude of radar site

K

[cosL 0 sin t

H rot2 0 1 0

£.-sin 0 cos
I

where 7 is latitude of radar site

K

az1 0 0

E rot3 = 0 cos(az) sin(az)

Figu-r asin(az) cos(az)J

Figure A.3. Inertial to site-based rotations.
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Combining the rotations yields

C5ý = [rot3][rot2][rotl]

(A.3)

[ cico ciso si
= -soc(az) - s'c~s(az) coc(az) - s(az)siso s(az)cj

sos(az) - sicoc(az) -cos(az)- stsoc(az) c(az)ci

Inertial to Radar Plane

The transformationi from inertial to radar plane coordinates is very

useful to the determination of satellite crossings of the radar plane. Rotation #1

accounts for earth rotation. Fig. A.4 shows the individual rotations necessary to

perform this transformation.

Combining these rotations yields

cO ,pco ceo so so r
C = -sO cO 0 (A.4)

--soc0 -so,•so cojp
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cos 0 sine 01

x rotl -sine cosO 0

L 0 0 ij

where 0 =we(t -t.)+ Ion,
o., is earth's rotation rate

t. is time of last Greenwich crossing of I axis

Ion, is West longitude of maximum North
latitude of radar plane

K

011, Cos Orr~ 0 sin~r 1
X rot2 0 1 0

O -sinew 0 cos& J

where 0, is inclination of radar plane to equatorial plane

Figure A.4. Inertial to radar plane rotations.
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APPENDIX B

LINEARIZED FILTER MATRICES 0 AND H

The extended Kalman filter can be viewed as a predictor-corrector type

estimator. States are predicted using non-linear plant dynamics. Then a correction

is computed by applying the Kalman gain to the filter residuals (observations

minus estimates). Calculation of the Kalman gain requires some type of

linearization of the plant and measurement dynamics (see eq. 3.18). Normally a

Taylor series expansion is used, keeping only first order terms which are evaluated

at the best current state estimate. The general form of the linearization of a

nonlinear discrete function

"fl (xk,TIk)

x = ,T (xT=) (B.1)

is

Dfl  Gf1  afl
ax 1,ax 2 x
af 2

0= ax, (B.2)

m afm
ax, x ax,
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Development of Linear Plant Matrix ,

As will be seen, the state matrix • can be as complex as one lets it

become. Following is a presentation of three progressively more complex models;

1) Keplerian two-body motion,

2) inclusion of dominant first order earth oblateness gravity effects, and

3) dominant atmospheric drag effects.

Two-Body Problem

State dynamics for a Keplerian 2-body orbit are given as

a,+, a k

e,+, eek

'k*I = k = f(xk,T) (1.3)

_Mk+l MN +a-
±ajx2Tk

Linearizing gives

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0 (B.4)

0 0 0 0 1 0

- 3-aYTk 0 0 0 0 1
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Secular Variations Due to Earth's Oblateness

To first order, the last three orbital elements are affected by secular

variations, so that

a.

ek

ik

x . = = f(x ,,T,)f ý -32 (Cos i, A
32

2pk
° + 3J2 (2- 5sin' i.)ANp-• (B.5)

Mk +a I +[J 2a• -(1-3sinr 2 )] T

where

rk Pk

I+ ecosyV

(B.6)

sin 5k =sin ik sin(vk +(0 )
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Linearizing gives

0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0

(1)~ af2iK, afk 0 ol

Dak ae, alk aM i

OMk: ajk. aMkll 0 _.M___ (B.7)

Da. aek alk aM I k

where the terms in the fourth row are found to be

aa k Pk aa,

aQ k+! = 3J23 cosik AV aP,
aek Pk aeP

aQ2 _ 3J
- 2 2 sinik AV

aik 2p 2 (B.8)

- = , Cos ikam• 2p• 2 m
~k k k
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where

0 Pk =1-e•ap 2

a k I

-e - (B.9)

avk 1(1+ e 2 )sin E+2e sin EcosE

aMk -sin vk (1-ecosE)'

The fifth row terms are found to be

aC .k+= -3J 2  apk

aak P 3aa

aw• k., = -3J 2  aP k
ae p3 A3 x ek

ek P k ae

a03t,- -15J 2  L.v2
ik CpO (B 10)

awC•I, = -3J 2 a k

'k 2 2 3,

where

A3, = 2-5sin2 i (B.11)
2
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Sixth row terms can be evaluated by

_M___ - -9J 2 AATark
4 4aa - 2r, k -'

aM_._ - 9J2 AATk)r
a 2r--'•- A 6

aMk÷l -9J2 A6 sinf6kTk a(sin 5, )
ik rk i

3M÷:-9J2 a(sin8 k ) (.2
=. A6 sin8 kTk )(B.12)

3 a'

amk+' -1+-A 6oTk 2A .
am2 k 2 k aMk

where

ark A5,

aak A 7,

r -2akekA 7 -Pk COSX'k

aek .7.

____ -3J 2 [ar in2k r

4 2r, si (in )k3A~o -J 3rL+3sin2 6k r-~---2k-2rk sin~k a(ilk)

avk r V axv kk0\'N k

ar a (I e')ek sin vk
k (B. 13)

Dvk (++ecosVk) 2

d(sin5k)
=v sin ik COS(Vk + Ok)

•Vk
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and

A 4, =1-3sin2 8k

A,, =1-ek2

A6, = 1 + L A4. y2

rk
=1+ (B.14)

A7, =l+e• kCos V' 4

As, =L• (I-3sin2 5k)

rk

Development of i and A

The relationship between the measurements (pseudo-obserx'ables) and

orbital parameters (filter states) is contained in the nonlinear function

zk =g(x k,Tk) (B. 15)

and is the same regardless of the state dynamics model being considered. The

observables of interest here are the north-south and east-west direction cosines, or

Fcos cx
Z = Cos (I (B.16)

L[Cosfj

and are related to the range vector 0 by

[s PE/

cosP - /P (B. 17)
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Note (from fig. B.1) that the HEN coordinate system in which p is received is not

truly up, east and north. H is local vertical, but E is tangent to the radar plane

great circle, and N is orthogonal to E in the local horizontal plane. This site-

dependent information is included in the transformation matrix C% (see App. A)

as the angle az between true east and E.

H

Figure B.1. Site-based coordinate system.

So PEI PN, and range magnitude p need to be expressed in terms of the

orbital parameters in order to form z = g(x, T). It can be stated that

[PHi PCO5y1
S= PE = ]pcosoX (B. 18)

_PNJ Lpcos3J
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In order to describe the direction cosines in terms of orbital parameters, first

consider fig. B.2. Earth's flattening has been exaggerated in the figure to clearly

show the effect on radar plane orientation. From the figure, it is clear that

r=rf +Rat +p (B.19)

where

R,i = R(lat) + alt,,,,

R(lat)= 1- Y298.26 sin (lat) (B.20)

ro•,0  = 20km

Oe

Figure B.2. Relationship between satellite position and range.
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R(lat) is the latitude dependent radius of a point on the reference geoid (due to

flattening) [7] and is assumed to be in the H direction. roffset is assumed to be

totally in the negative N direction, and altsite is the receiver's altitude. Combining

the elements of eqs. B. 18 and B. 19 yields

ROW +pcosY

r = pcoscx (B.21)
L-r..ff + p Cos 1

rH is the transformation of rP from the orbit-fixed coordinate system to site-based

coordinates, or

r" = CBCYrP

Hi H2 H3PIP P2 P3jrcos] x= H4 H5 H6 / P P6Ir sin x,
-H7 H8 H9]-P7 P8 P9 J- 0 J(B.22)

[r(R, cos x, + R sin v)1
= jr(R, cosv+R 2 sin'v)

Lr(R, cosv+R 5 sin v)_,

where

RI =H 4 PI +H5 P4 + HP7

R 2 =H 4 P2 + H5 P5 + H6 P8

R4 = H7 P1 + HP 4 +HP7

R = H7 P2 +H.Ps +H9 P3  (B.23)

R7 =HIP, +H 2P4 +H3P7

R, =HP2 + H2 PS + H3 PS
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Combining eqs. B.18,B.21, and B.22 yieldsEPHi [r(R, cos v +R, sin v) -R 1it
PE- r(R, cosv+R 2 sin ,) (B.24)

jPN r(R 4cos v+ R, sin v) + r.,,J

From eq. B.24, p can be calculated as

Jp H p+PF+pNI (B.25)

Now, eq. B.15 can be used as the estimate of the observation to compute filter

residuals. But the Kalman gain depends on the matrix H, which is derived by

linearizing g(x , T, ) with respect to Xk.

The form of H is as follows

a(%P) _____

_i Da aM (B.26)

(oP) Ia(PN)
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where

a(PE/P 1 DapE 1 ap

Da p aa p2 aa

(P/PI• 1aPE 1 ap
aM p DM PEp 2 acM

_____ I aPN 1N ap

aa p aa P'aa
(B.27)

a(PNP 1/PN I ap
aM p OM PN2 •M

Following are the details of this development.

=PE -(RI cos vN+ R 2 sin v)

aa aa

ap = (R, cos v + R8 sin v) ar

aa aa

aPN =(R 4 cosv+R, sin v)aar

aa aa
(B.28)

ap (PH D( p11  aPE + aPN
'a= p aa a aa
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where

dr _1-e
2

S e(B.29)

The expressions for the change in p with respect to eccentricity e are identical to

eq. B.28 except for the replacement of 1aa with %e' which is

ar = -a(2e + cos v+ e2 cos v)
ae (1 + e cos v)2

Since the Rr terms in eq B.24 are functions of the orbital elements i, Q), and co,

the expressions for the change in p with respect to these three elements are as

follows, with the replacement of a' by the appropriate element:

aPE( a;R0Z.-y-="j-"•cos '+R sin0 v jr

apr = R, cos N + sin v r

a; I a- a;,-

ap = C + sin N r

a; a-;a

(B.31)

DP = I (H aPH +PEaPE + NaPN
Da p a; a; a;
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The expressions for the change in p with respect to a change in mean anomaly

M is more involved because of the relationship between mean and true anomalies.

This relationship is repeated here for convenience:

M = E - e sin E (B.32)

= cos E - e (B.33)
1-ecosE

sin N = sin EVi7 (B.34)
1 -ecosE

Taking partial derivatives as appropriate yields

api = R +(cosE) si r+[R, cosv+RR sin]- dra-m _ am am Ia%

aPF_ (cos v) a(sin v) +[R ,+R

apM = R1 +R 2  r+R 2-')+R 2 sin ]-

, = R4co R5 R,(sin ')a [R o

am= aM am J-[ sv+R5 sin a]- (B.35)

ap l[ apH aPE + PN 1pN
aM P am o- am mJ
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where

a(cos v) sin v aE
dM aE DM

a(sin v) C v' aE

dM aE aM

ar ae(1 -e 2 )sin v av )E

aM (1 + e cos v) 2 aE aM

ax, -(1 + e2 ) sin E + 2e sin E cos E

E -sin v(1-e cos E)2

(B.36)

E 1
M 1- e cos E

All the expressions for the partial derivatives of the Rn terms can be found in

Table B. 1.
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Table B.1. DEVELOPMENT OF TERMS FOR H

- =sws~fl - sox&c~sii- + scocii - -= c Isf~sfl- 4 -cocK~si-1 5+ ccociH1
Di D

aRDR
-- P, H, + P IHs LL=-PSH4 + P2H 5

aRI aR,
- P 2H, + PH 5+P 8H -o=-_P IH4 -P 4 H 5 -137H 6

IWK~if sxKsi +s(iH9 cR, si -c~cwsiH + cw~iH

- pH +P.Hb ~=-_p5H? +P 2 H

LR, p H7+ p5 Hs+ P H 9-R5= _p H 7  -P 4 H B -PH 9

D,= SscsQsiH -sCcwQsiH 2 + scoiH 3  -,= ccsQsiH1 -ccocCsi-1 2 + cciH 3

aR-'= PH, PH 2 RI P.H, + P 2 H 2
U22 afŽ

aR =P 2H I+ P5 H 2  + P 9H 3  R = P H - H 2 7 3
aci awI
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APPENDIX C

FILTER CODE (MATLAB)

Following is the Matlab code for the extended Kalman filter described in this

paper. This particular filter models the 2-body orbital dynamics problem,

including secular and periodic perturbations. It requires 2 data files for input (see

header of filter code):
datain - contains a time-tagged initial orbital element set and an unspecified

number of time-tagged pairs of direction cosines and
corresponding receiving sites

siteinfo - contains pertinent information about the set of receiver sites
comprising the radar plane detection system.

The filter calls 3 functions:
enewton - performs a Newton-Rapson iteration to obtain eccentric anomaly,

given a mean anomaly and eccentricity
intper - performs a Newton-Rapson iteration to propagate satellite position to

an in-radar-plane condition.

twopi - forces angular measurements to a number between 0 and 27t.

Extended Kalman Estimator

The code for these functions follows the filter code.

This estimator requires 2 input files to run
DATAIN & SITEINFO.

datain=[250 116 82 191626.933 0 0
103.591322 .00756997 66.81264 189.71773 26.77689

116.53101
83 65024.876 6 14.839 .092 0
83 83436.223 5 -76.912 .012 0
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83 83436.259 4 -63.554 .009 0
83 83436.397 1 58.982 .062 0
83 83436.408 3 -57.058 .043 0
83 83436.425 6 -78.987 .034 0
83 160057.722 6 64.179 .030 0
83 174304.847 3 -16.315 .020 0
83 174304.904 5 -58.495 .007 0
83 174304.906 6 -62.516 -. 001 0
83 174304.908 1 74.290 .012 0];

siteinfo=[l 32.57840 -116.97016 1.87473e-5 8.58120
2 33.44600 -106.99824 2.212449e-4 3.13900
3 33.33239 -93.55039 8.143107e-6 -4.27563
4 33.14672 -91.02096 6.738134e-7 -5.66895
5 32.28768 -83.53628 1.118243e-5 -9.71924
6 32.04323 -81.92609 3.866064e-6 -10.5800i

function[xkeep, Tkeep,Tint,delTint,resid, xint,Pkeep]=...
orbper (datain, siteinfo) ;

inpels=[datain(!, :) ';datain(2, :)'] ;
observ=datain(3:iength(datain(:,I)),2:5);
K=inpels(1);
for i=1:7
lat (i) =siteinfo (i, 2) *pi/1 8 0;
ion (i) =siteinfo (i, 3) *pi/180;
alt (i)=siteinfo (i,4);
az (i) =siteinfo (i, 5) *pi/180;

end

THIS PROGRAM PROPAGATES A SATELLITE ORBIT AS A 2-B&DY PROBLEM
WITH SECULAR VARIATIONS IN OMEGA, omega, and MEAN ':. LY. IT
CALLS THE FOLLOWING FUNCTIONS:

TWOPI - places angle between 0 & 2*pi.
INTSEC - iterates to an in-fence-plane condition when a fence

plane crossing is detected.
ENEWTON - solves for eccentric anomaly, given values for mean

anomaly and eccentricity.

* ** ************************ *********************** *** **** ** *** ***

* DEFINE EARTH ROTATION RATE *

earthrot=.05883378171654; % Define earth rotation rate (rad/TU).
J2=1.082645e-3;

* DEFINE VARIOUS TERMS *

R=[4e-8 0;0 4e-8]; % Measurement noise matrix.
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Pkkrn1=eye(6)*le-8; % initialize error covarian~ce mra--rix.
Pkeep (:1: 6) =Pkkml;
residi: 1) =[ 0;O0];
G=zeros(6,2); % Initialize Kalman gain.
finc=33.583l0*pi/180; % Define fence inclination.
cosfi~nc=cos (finc) ;
sinfinc=sin (finc);
lonx=-1O1.3l348*pi/l8O; % Define location of fence x-axis.

*INITIALIZE STATES (ORBITAL ELEMENTS)*

xnow=[ (inpels (7) /(2*pi*13.44689317) ) (2/3);
inpels (8);inpels (9:12).*pi/l80);

xkeep(:,1)=xnow; % Save original states.

*CALCULATE INITIAL ECCENTRIC ANOMALY

EA (1) =Enewt-on (xnow (6),xnow (6),xnow (2));

*FIND INITIAL r and TA*

cosTA= (cos (EA (1)) -xnow (2) )/I(l-xnow (2) *cos (EA (1)));
sir.TA=sqrt (1-xnow(2) "2) *sin(EA(l) )/ (l-xnow(2) *cos (EA-(I,)))
r=xnow(l) *(l-xnow(2) "2) / (+xnow(2) *cosTA) ;
TA(1)=twopi(asin(sinTA));
if TA(l)<pi
if cosTA<O
TA(l)=pi-TA(3.); % Perform quadrant check

end % for true anomaly.
else
if cosTA<O

end)=3*i-T 1
end

*CALCULATE TRANSFORMATION MATRIX (ORBITAL TO INERTIAL)

cosperi=cos (xnow (5));
sinperi=sin (xnow (5));
cosascnd=cos(xnow(4)); % Calculate sines & cosines of
sinascnd=sin(xnow(4)); % angular orbital elements.
costilt=cos (xnow (3));
sintilt=sin (xnow (3));

Pl=cosperi*cosascnd-sinperi*sinascnd*costilt;
P2=-sinperi*cosascnd-cosperi*sinascnd*costilt;
P4=cosperi *sinascnd+sinperi *cosascnd*costilt;
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PS=-sinperi*sinascnd+cosperi*cosasond~costilt;
P7=sinperi *sintilt;
PE=oosperi'lsintilt;

INITIALIZE TIME

& ~oneian92=98. 920250932.*pi/l80;
TUperday=107. 0879334097483;
secperTU=806. 81359;
JD=inpels (3);
time=inpels (4);
hrs=fix (time*le-4);
min=fix(rern(tirne,1e4) *le-2);
sec=rern(tirne, 1e2);
Tfilter= (hrs*3600+min*60+sec) /secperTU;
Tgrnwch~rem(earthrot*TUperday* (Tfilter/TUperday+...

(JD-1) )+oneJari92, 2*pi) /earthrot;
Tcld=Tfilter;
Tkeep(l)=JD+Tfilter*secperTU/86400; % Save origirnal time

1 N:TIALIZE TIME OF FIRST OBSERVATION

time=observ(l,2);
hrs=fix (time~le-4) ;
min=ffix (rem (time, 1e4) *le2) ;
sec=rem (time, 1e2);
timeobs= (hrs* 3600+Imin*60±sec) /secperTU;

*CALCULATE OUT-OF-FENCE-PLANE COORDINATE OF SATELLITE POSITION

theta=twopi (earthrot*Tgnwch+lonx);
sintheta=sin (theta);
costheta=cos (theta);
zfence=.003l+ (-sinfinc*costheta*Pl ...

-sirnfinc*sintheta*P4 ...
+cosfinc*P7)*r*cosTA ... % Calculate current magnitude
+(-sinfinc*costheta*P2 .. .% of out-of-plane coordinate.
-sinfinc*sintheta*P5 ...
+cosfinc*P8) *r*sinTA;

*PROPAGATE ORBITAL ELEMENTS TO NEXT FENCE-PLANE INTERSECTION*

J2= .082645e-3;
p=l;
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fcr k=1:K

Tloop=pi/8*xnow(1) "a.5;

INCREMENT MEAN' ANOMALY & APPLY SECULAR VARIATION

rnnmotion~xnow(l) A(-3/2);
xnow(6)=twopi(xnow(6)+rnnmotion*Tloop);
EA (k+l) =enewton (xnow(C6),xnow (6),xnow (2) )
cosTA= (cos (EA(k+1) )-xnow(2) ) / (-xnow (2)*cos(EA (k-s-)));
siriTA=sqrt (i-xnow (2) "2) *sirl(EA (k+l) )/ (1-xiow (2)*cs(E-A (k+l) )) ;
r=xnow(l) *(l-xnow(2) "2) / (+xnow(2) *cosTA);

TA (k+i) =twopi (asin (sinTA));
if TA(k+l)<pi
if cosTA<O
TA(k+2.)=Pi-TA(k-KJ'; %Perfform~ q'2;adJant check

end % for true anoma-lv.
else
if cosTA<O
TA(k-t-1)=3*pi-TA(k+l) ;

end
end

*APPLY SECULAR VARIATIONS TO omega & OMEIGA

delTAsec=twopi (TA (k+.) -TA(k));
semilat~xnow(1) * (-xnow (2) "2);
Ql=-3*J2/semilatA2;
SOMEGA=Ql'*cos (xnow(3) )/2;
Somega= (-Qi) *(2-5/2*sin (xnow (3) ) 2)/2;
delsOMEGA=SOMEGA*delTAsec;
delsomega=Somega*delTAsec;
xnow (4) =xnow (4) +delsOMEGA;
xnow (5) =xnow (5) +delsornega;

*CALCULATE ATMOSPHERIC DENSITY*

k2=3e-6;
k3=21/6378.135;
atrndens=k2*exp( (1-r) /k3);

*APPLY DRAG PERTURBATIONS TO a & e

kl=-4*6378.135;
deldrag= Ikl*xnow (1) '2* (1+xnow (2) )*atmdens*delTAsec;

kl*xnow(l)*(l-xnow(2)A2)*atmdens*delTAsecý;
0;0;0;O0 ;
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xnow=xnow-deldrag;

*CALCULATE TRANSFORM.ATION MATRIX (ORBITAL TO INEJ:=AL)

cosperi=cos (xnow(5));
sinperi=sin(xnow(5));
cosascnd=cos(xnow(4)); % Calculate sines & cosines c-f
sinascnd=sin(xnow(4)); % angular orbital elements.
costilt=cos (xnow (3) );
sintilt=sin (xnow (3));

Pl=cosperi*cosascnd-sinperi*sinascnd*costilt;
P2=-sinperi*cosascnd-cosperi *sinascnd*costil-L;
P4=cosperi*sinascnd+sinperi*cosascnd*costilt;
P5=-sinperi*sinascnd+cosperi*cosascnd*costilt;
P7=sinperi *sintilt;
P8=cosperi*si4ntilt;

*UPDATE TIME

Tgnwch=Tgnwch+Tloop;
Tffilter=Tfilter+Tloop;

CALCULATE OUT-OF-FENCE-PLANE COORDINATE OF SA:ELL:TEE POSITION

theta (k+l) =twopi (earthrot*Tgnwch+lonx);
sintheta=sin (theta (k+lj);
costheta--cos (theta (k+l))
z fold=z fence;
zfence=.0031+ (-sinfinc*costheta*Pl ...

-sinfinc*sintheta*P4...
+cosfinc*P7)*r*cosTA ... % Calculate current magnitude
+(-sinfinc*costheta*P2... % of out-of-plane coordinate.
-sinfinc*sintheta*PS ...
+cosfinc*P8) *r*sinTA;

*CHECK FOR FENCE PLANE INTERSECTION*

*NEGATIVE TO POSITIVE ??*

if zfence>O
if zfold<O
n=n+l;
negtopos=n;
xnow=xnow' ;
[Tloop, Tfilter, Tgnwch, flag, xnow, r, cosTA, ...

sinTA,TA(k+l) ,theta (k+1) ,EA(k+1) ,zfence]= ..
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inttenp (xnow, r, cosTA, ...

P5,P7,P8,'.-gnwch,Tfilter,Tloop);
xnow=xnow';

end
end

*POSITIVE TO NEGATIVE ??*

if zfence<O
if zfojld>0
flfl+l;
postoneg=n;
xnow=xnow';
[Tloop,Tfilter,Tgnwch, flag,xnow,r,cosTA,..
sinTA,TA(k+l),theta(k+l),EA(k+l),zfence]= ...
ir'ttemp (xnow, r, cosTA, ...

sinTA,TA(k+JJ,theta(k+l),EA(k+lJ,P2.,P2,P4,...
P5,P7,P8,Tgnwch,Tfilter,Tloop);

xnow=xnow';
end

end

TAold=TA(k+l);

*SATELLITE IN NAVSPASUR WINDOW ??

if flag==J.

* CALCULATE TIME FROM LAST FILTER UPDATE (LAST OBS)*

delobs=tirneobs-Tfilter;
while abs (delobs) <21
if length (observ (:, 1) )>=p
delobs=tirneobs-Tfilter;

delT=delobs;
delTint (p) =delT*secperTU;
Tint (p) =(tirneobs*secperTU) /3600;

Tupdate=tizneobs-Told;
if Tupdate<0
Tupdate=Tupdate +TUperday;

end
Told=timeobs;
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Tfi lter=Tfilter+delT;
Tgnwch=Tgnwch+de iT;

INCORPORATE PERIODIC VARIATIONS*

xmean=xnow;
daper=3*J2*xnow(.) / (2*sernila tA2* (l-xnow (2) "2)) ~..

sin (xnow (3) ) "2cos (2* (xnow (5) +TA (k-s-) ) );
deper=3*J2/ (2*semilat"2) * ((1-3/2*sin (xnow(3-) ) 2) *cosTA+..

1/4*sin(xnow(3) )A 2*cos(2*xnow(5)+TA(k+1))+....
7/12*sin(xnow(3) )"2*cos (2*xflow(5)+3*TA(k+l) ) );

diper=-~3*J2/(8smlt2*i(*nw3) ..
cos (2* (xnow (5) +TA(k+l)));

dOMper=3*J2/ (4*semilatA2) *~co(xnow (3) )*.
sin (2* (xnow(5)+TA(k+.) ) );

*sin(2* (xnow(5)+TA(k+1) )) ;
dtemp=3*J2/ (2*semilat"2) * (/xnow (2)* ...

(1-3/2*sirI(xnow (3) ) 2) *sinTA-..
1/4*sin(xnow(3))"2*sin(2*xnow(5)+TA(k+l))-..
7/12*sifl (xfow (3) ) "2sin (2*xnow (5) +3*TA (k-t) ) 1))+...
1/2* ((1-~3/2*sin (xnow(3) ) 2)*sin(2*TA(k+l) )-..
(1-5/2*sin(xnow(3))"2)*sin(2*(xnow(5)+TýA(k+l)))+s...
3/B*si-n(xnow(3) ) 2*si-n(2*xnow(5)+4*TAý(k+Iý) ))

ciorper=dternp;
dM.Aper=dnewper-doniper;
varper=[daper;deper;diper;dOMper;domper;dMAper];
xnow=xnow-svarper; xnow(6)=twopi (xnow(6));
EA(k-s-)=enewton(xnow(6),xnow(6),xnow(2));
cosTA= (cos (EA (k-s-) )-xnow (2) )/ (i-xnow (2)*cos(EA (k~l) ));
sinTA~sqrt (I-xnow (2) "2) *sin(EA(k+i) )/ (1-xnow(2) ,c'~s(7-b (k-'l) ) );
r~xnow(l) * (-xnow(2) "2)! (l-sxnow (2) *cosTA) ;

TA(k+i)=twopi (asin(sinTA));
if TA(k+i)<pi
if cosTA<0
TA(k+l)=Pi-TA(k-s-); % Perform quadrant, check

end % for true anomaly.
else
if cosTA<O
TA (k+ 1)=3*pi-TA (k+ 1)

end
end

*CALCULATE ANGULAR DISPLACEMENT OF RECEIVER SITE FROM I-AXIS*
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phi~twopi (earthrot*Tgnwch+lon (observ (p, 3)));

sinphi~sin(phi);

siniat=sin (lat (observ (p,3)));
coslat=cos (lat (observ (p,3)));
sinion=sin (ion (observ (p,3)));
cosion=cos (ion (observ (p,3)));
cosperi=cos (xnow (5));
sinperi=sin(xnow(5));
cosascnd=cos (xnow(4));
sinascnd=sin (xnow(4));
costiit=cos (xnow(3));
sintijlt=sin (xnow (3));

P2.=cosperi*cosascnd-sinperi*sinascnd*costilt;

P2=-sinperi*cosascnd-cosperi*sinascnd*costilt;

P4=cosperi*sinascnd+sinperi*cosascnd*costil't;

P5=-sinperi *sinascnd+cosperi *cosascnd*costilt;

P7=sinperi*sintilt;

P8=cosperi*sintilt;

sinaz~sin (az (observ (p, 3)));
cosaz~cos (az (observ (p, 3) ));

H1=cosiat*cosphi;
H2=coslat *sinphi;
H3=siniat;
H4=-sinphi *cosaz-sinlat *cosphi*sinaz;
H5=cosaz*cosphi-sinaz*sinlat*sinphi;
H6=sinaz*coslat;
H7=s inaz *s irphi-cosaz * siniat *cosphi;
H8=-sinaz*cosphi-cosaz* siniat*sinphi;
H9=cosaz*coslat;

R1=H4*P1+H5*P4+H6*p7;
R2=H4 *P2+5*P5+H6*P8;
R4=H7*P1+H8*P4+H9*P7;
R5=H7 *P2+H8*P5+H9*P8;
R7=H1*P1+H2*P4+H3*P7;
R8=H1*P2+H2*P5+H3*P8;
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ESTIMATE MEASUREMENT

Rsite~sqrt (1- (2-1/298.26),1296.26,s in la t^2) +a-',t (o-bservec.-, 3))
roffset-=.0031;
rholi=r* (R7*cosTA+R8*sinTA) -Rsite;

rhoE=r* (Rl*cosTA+R2*sinTA);

rhoN~r* (R4*cosTA+sR5*sinTA) +roffset;

rho=sqrt (rhoHA2+rhoEA2+rhoNA2);

zest (:,p) =[rhoE/rho; rhoN/rhol;

size=xnow(2);shape=xnow(2);tilt=xnow(3);
ascnd.=xnow (4); peri=xnow (5);MA=xriow (6) ;

*CALCULATE COVARIANCE MATR TX P*

J2=1. .082645e-3;
sinEA=sin(EA(k+l));
cosEA~cos (EA(k+1));
si-ndecl=sintilt*siri(TA(k~sl)+peri).
serrnilat=size'w(l-shape^'2);

CALCULATE APPROXIMATE delta (TRUE ANOMALY)*

mzinmotiori=xnow(l) A(-3/2);
delM.A=mnnrotion*Tupdate;
delTA=delMAI;
Alphi=- (l+shapeA2) *sinEA+2*shape*sinEA*cosEA;
A2phi>=1 shape*cosEA;
A3phi=2-5/2*sintiltA2;
.ftAphi=1-3*sindecl^2;
A5phi=l-shape"2;
A6phi=sqrt (l/size+J2/rA3*A4phi) ;
A7phi=l+shape*cosTA;

dOMEGAda=3*J2/ (size*semilatA2) *costilt*delTA;

dOMEGAde=-6*J2*size*shape/sernilatA3*costilt*deJ.TA;

dOMEGAdi=3*J2/ (2*sernilatA 2) *sintilt*delTA;

dOMEGAdM=-3*J2/(*"*semilatA2) *costilt*Alphi/ (sinTA*A2phiA3);

domegada=-3 j2/ (size*semilatA2) *A3phi*delTA;

domegade=6*j2*size*shape/seanilatA3*A3phi*de1TA;
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cioregadi=-15*J2/ (2*senmilat"2) *sintilt*costýilt*de1?A;
domegadiM=-3*J2/ (2*sernilatA2) *A3phi*Alphi/ (sinTAwA2ph,'-,i^3) ;

cirkdak=A5phi /A7phi;
dMAda=3/2*Tupdate*A6phi* (-l/size"2+J2*A4phi* (-3/r"4) *drkdak);
drkdek=(-2*size*shape* (1-shape*cosTA)-~sernilat*cosTA) /A7phi"2;

dMAde=3/2*Tupdate*A6phi*J2*A4phi* (-3/r"4) *drkdek;6
dsindkdi=sirn(TA(k+l)+peri) *costilt;

dMAdi=3*Tupdate*A6phi* (3*J2/r A3)*sneldsnki

dsindkdo=sintilt*cos (TA (k+l) +peri);
dMAdornega=3*Tupdate*A6phi* (-.3*J2/rA3) *sindeci *dsindkdo-4;
drdTA=semilat*shape*sinTA/A7phi "A2;
ds inddTA=dsindkdo;
dxnessdTA=-3*j2/r"2*drdTA- (-9*J2/r^4*sindec JA2*drdTA+...

6*J2/rA3*sindecl*dsinddTA);
dTAdŽ4A=-Alphi/ (sinTA*A2phi^3);
dMAdM=1+3/2*Tupdate*A6phi-*dmessdTA*dTAdM.A;

dada=1+2*kl*size* (1+shape) *at,-mdens*delTA;
dade=kl *size"2*atmdens*delTA;
ciadM=-kl*size A2* (l+shape) *atmdens*dTAdML;

deda=kl *A~phi*atmdens*delTA;
dede-1-2*k1 *sjze*shape*atmcjens*del TA;
dedM=-kl *size*A~phi *atmdens*dTAd~i;

phirnat=[dada dade 0 0 0 dadM;
deda dede 0 0 0 dedY;
0 0 2. 0 0 0;
dOMEGAda dOMEGAde dOMEGAdi 1 0 dOMEGAdM;
dornegada dornegade domegadi 0 1 domegadM;
dMAda dMAde dMAdi 0 dMAdoinega dMAdM];

*CALCULATE PLANT NOISE*

J2=1 .0826e-3;
sernilat=xnow(1) * (-xriow(2)A "2);
siga2= (3*J2*xnow (1) /(2*semilatA 2* (1-xnow (2) "2)) *...

sin (xnow (3)) "2*cos (2* (xnow (5) +TA(k+1) )) ) 2;
sige2= (3*J2/ (2*semilatA 2) *((1-3/2*sin (xnow (3)) "2) *cosTA+..
sigi2= (3*J2/ (8*semilatA 2) *sinj(2*xlow (3) )*...

cos (2* (xnow(5) +TA(k+l))) )A 2;
mnmotion=xnow(1)"(-3/2);
MApert=mnmotion*3*J2/ (2*semilatA 2) *(1-3/2*sih (xnow (3)) "2)* ...

sqrt (1-xnow (2)A "2);
sigOMEG2= (3*j2/ (2*sernilatý2) *mnmotion*cos (xnow (3) )*Tupdate)A "2;
sigomeg2= (3*J21 (2*sernilatA 2) *mnmotion* ...
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(2-5/2*sin (xnow (3)) 2) *Tupdate) '2;
s'gMA2= (MApert*Tupdate) '2;

Q=[Ie-2*siga2 0 0 0 0 0
o le-3*sige2 0 0 0 0
o 0 sigi2 0 0 0
o 0 0 sigOMEG2 0 0
o 0 0 0 sigomeg2 0
o 0 0 0 0 sigMA2].*le-3;

PROPAGATE ERROR COVARIANCE*

Pkk=Pkkml;
Pkkrnl=phirnat*Pkk*phirnat '+Q;

*CALL IN OBSERVATION DATA *

cosalpha~sin (observ (p,4) *pi/180);
cosbeta=sin (observ (p, 5) *pi/180);
z (:,p) =[cosalpha;cosbeta];

*CALCULATE LINEARIZED MEASUREMENT MAT-.ZR:X H

al=1-xnow (2) A2;
a2=1-4xnow (2) *cosTA;
a3=2*xrlow(2)+cosTA*(l+xnow(2)A2);
a4=2*xnow(2) *sinEA*cosEA;
a5=1+xr~ow (2 ) A2 ;
a 6=-a5 * s nEA-ea4 ;
a7=1-xnow (2) *cosEA;

drda=al /a2;
drde=-xnow(l) *a3/a2^~2;

dcosTAdT=-sinTA;
cITAciEA= (-a5*sir1EA+a4) / (-sinTA*a7A2);
dEAd1VA=1 /a7;
dcosTAdM=dcosTAdT*dTAdEA* dEAdMA;

dsinTAdT=cosTA;
ds inTAdM=dsinTAdT*dTAdEA*dEAdMA;

drdTA=xnow(1) *xnow(2) *al*sinTA/a2A2;
drdMA=drdTA* dTAdEA*dEAdMA;

dRcIdi=sinperi*sinascnd*sintilt*H4-...
sinperi*cosascnd*sintilt*H5+...
sinperi *costilt *H6;
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dR2cii=cospezi*si~nascnd*sintilt*H4-...
cosperi~cosascnd*sintilt*H5+...
cosperi*costilt*HE;

dR4di=sinperi *sinascnd*sintilt*H7-..
sinperi*cosascnd*sintilt*HB+..
sinperi*costilt*H9;

dR5di=cosperi*sinascnd*sintilt*H7-...
cosperi*cosascnd*siritilt*H8+...
cosperi*costilt*H9;

dR7di=sinperi*sinascnd*sintilt*Hl-...
sinperi*cosascnd*sintilt*H2-...
sinperi *costilt *H3;

dR8di=cosperi*sinascnd*sintilt*Hl-...
cosperi*cosascnd~tsintilt*H2+...
cosperi*costilt*H3;

dRldOM=-P4*H4+Pl*H5;
dR2dOM=-P5*H4+P2*H5;
dR4dOM=-P4*H7+Pl*H8;
dR5dOM=-P5*117+P2 *HB;
dR7dOM=-P4 *Hl+P1*H2;
dR8dOM=-P5*Hl+P2*H2;

dRlIdorp=P2*H4+P5*H5+P8*H6;
dR2dom=-Pl.*H4-.P4*HS5P7*H6;
dR4dom=P2*H7+P5*HS+PB*H9;
dR5dom=-P1 *H7-P4 *H3.P7*H~9;
dR7dom=P2*Hl+P5*H2+P8*113;
dR8dom=-P1 *H-p4 *H2.P7*H3;

dplida= (R7*cosTA+R8*sinTA) *drda;
dpEda= (Rl*cosTA+R2*sinTA) *drda;
dPNda= (R4*cosTA+R5*sinTA) *drda;
dpda= (rhoH*dpHda+rhoE*dpEda+rhoN*dpNda) /rho;

dpHde= (R7*cosTA+R8*sinTA) *drde;
dpEde= (R1*cosTA+R2*sinTA) *drde;
dpNde= (R4*cosTA+RS*sinTA) *drde;
dpde= (rhoH*dpI~de+rhoE*dpEde+rhoN*dpNde) /rho;

dpHdi= (dR7di*cosTA+dR8di*sinTA) *r;
dpEdi= (dRldi*cosTA+dR2di*sinTA) *r;
dpNdi= (dR4di*cosTA+dR5di*sinTA) *r;
dpdi= (rhoH*dpHdi+rhoE*dpEdi+rhoN*dpNdi) /rho;

dpHdOM= (dR7dOM*cosTA+dR8dOM*sirlTA) *r;
dPEdOM= (dRldOM*cosTA+dR2dOM*sinTA) *r;
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dpNciOM= (dR4dOM*cosTA+dR5dOM*sinT.A) *r;
dpdOM= (rhoH*dpHdOM+rhoE*dpEdOM+rhoN*cipNcOM) ,'rho;

dpHdon= (dR7dorn*cosTA+dR8dorn*sinTA) *r;
dpEdom=~(dRldorn*cosTA+dR2dorn*sinTA) *r;
dpNdom=~(dR4dorn*cosTA+dR5dom*sinTA) *r;
dpdon= (rhoR*dp~dom+rhoE~IdpEdom+rhoN*dpNdan) /rho;

dpHdM'A= (R7*dcosTAdM+RB*dsinTAdMi)*r+ (R7*cosTA+RE*
sinTA) *drdMA;
dpEdMA= (Rl*dcosTAdll+R2*dsinTAdM) *r+ (Rl*cosTýA+R2*
sinTLA) *drdMA3;
dpNdI4A=(R4*dcosTAciN+R5*dsjnTAdM) *r+(R4*cosTA+R5i*
siriTA) *drdMA;
dpdI4A= (rhoH*cipHdMA+rhoE*dpEdMA+rhoN*dpNdYA) /rho;

drhoEda=dpEcia/rho-.rhoE*dpda/rhoA2;
drhoNda=dpNda/rho-rhoN*dpda/rhoA2;

drhoEde=dpEde/rho-rhoE*dpde/rho^~2;
cirhoNde=dpNcie/rho-rhoN*dpde/rho^2;

drhoEdi-=dpEdi /rho-rhoE*dpdi/rho^2;
drhoNdi=dpNdi/rho-rhoN*dpdi /rhoA2;

cirhoEdOM=dpEdOM/rho-rhoE*dpdOM/rho"2;
cirhoNdOM=dpNdOM/rho-rhoN*dpdOM/rhoP'2;

drhoEdorn=dpEdom/rho-rhoE*dpdorn/rho^2;
drhoNdom=dpNdom/rho-rhoN*dpdom/rhoA2;

drhoEdMA=dpEdMA/rho-rhoE*dpdMA/rho^2;
drhoNdM.A=dpNd1MA/ rho-rhoN*dpdMA/ rho^2;

H=[drhoEda drhoEde drhoEdi drhoEdOM drhoEdom drhoEdMA;
drhoNda drhoNde drhoNdi drhoNdOM drhoNdom drhoNdMA';

*CALCULATE KALMAN GAIN*

G=Pkkml*H *jnv(H*Pkkml *HI +R);
resid (: ,p) =z (:,p) -zest (:,p);

*CALCULATE IMPROVED COVARIANCE*

Pkk= (eye (6) -G*H) *Pkkml;
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Pkeep(:,p*6±2.:6* (p*i) )=Pkk;

*CALCULATE IMPROVED MEAN ORBITAL ELEMENTS

xnow=xmean;
G*resid (: , p)
xnow=xnow+G*resid (:,p);
xnow (6) =twopi (xnow (6))

xint (1: 2,p) =xnow (1:2);
xint(3:6,p)=xnow(3:6)*180/pi;

*CALCULATE IMPROVED ECCENTRIC ANOMALY*

EA (k+l) =enewton (xnow (6),xnow (6) ,xnow (2) )

SOLVE FOP IMPROVED cos(TA), sin(TA), r, sin(decl1), n.

cosTA= (cos (EA(k+l) )-xnow(2) )/ (1-xnow (2)*cos(EA(k-i-)))
sinTA=sqrt(l-xnow(2)V2)*sin(EA(k+l))/(l-.%:rcw(2) ...

r=xriow(I) (1-xnow(2) ̂ 2) /(li-xnow(2) *cos'l7-) ;

TA(k+1)=twopi(asin(sinTA) )
if TA(k+1)<Fi
if cosTA<O
TA(k+l)=pi-TA(k-'-); % Perform quadrant: check

end % for true anomaly.
else
if cosTA<O
TA(k+1)=3*pi-TA(k+2.)

end
end

TAold=TA(k+.) ;

if length(observ(:,l))>p
p=p+J.;
time=observ (p, 2);
hrs=fix (time*le-4);
min=fix (rem (time, 1e4)le..2);
sec=rem (time, 1e2) ;
timeobs= (hrs*3600+min*60+sec) /secperTU;
delobs=timeobs-Tfilter;

else
delobs=2;
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end
end

end
end
f lag=C;

*RESET TIMES FOR NEW DAY

if Tgn********************************8

ifTgnwch>Tnýh106.79553953698568

end
.if Tfilter>107.0879334
Tfilter=Tfilter-107 .0879334;
JD=~JD+l;

end
),xkee-'(: ,k+i) =xnow;
Tkeep (k+2) =JD+iTfi.lter*secperTU/86400;

e n C

In-plane Iteration

functi-on[T,Tfiltýer,Tgnwch,flag,xnow,r,cosTA,..
sinTA, TA, theta, Enow, zfence= =...

in-tternp(xnow,r,cosTA,sinTA,TA,theta,Encw-*,..
Pl,P2,P4,p5,p7,P8,Tgnwch,Tfiater,T);

xnow=xnow';
J2=1 .082645e-3;
eart.hrot-=.05883378171654;%Define earth rotation ra-e (rat/u).
lon~x=-101 .31348*pi/180;
f4 nc=33.58310*pi/180;
sinfinc=sin (finc);
cosfinc=cos (finc);
delT=0;
zfence~1; % INITIALIZE OUT-OF-FENCE-PLANE VALUE OF POSITION

% ITERATE TO IN-PLAN'~E CONDITION

while abs (zfence) >=le-8

% ADD IN PERIODIC VARIATIONS *

sernilat=xnow(1) *(1-xnow (2) A2);
daper=3*J2*xnow(l) /(2*semilatA,2* (lxnow(2) '2))* ...

sin (xnow (3) ) 2*cos (2* (xnow (5) -sTA) );
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deper=3*j2/(2*semilat^2)*((1-3/2*si'n(xnow(3))^2)-*czcsA+...
1/4*sin (xnow(3) ) 2*cos (2*xnow (5) +TA) +..
7/12*5Th (xnow (3) ) ̂ 2cos (2*xlow (5) +3*TýA)) ;

diper=-3*j2/ (8*semila tA2) *sji(2*xnow(3)) ..
*co(2* (xnow (5)+TA) );

dOMper=3*J2/ (4*semilat^'2)*co(xnow(3) ) *gji(2*(xncw(5) +KA));
dnewper=-3*J2/ (4*semilat"2) *(1-.5/2*sin (xnow (3) ) 2) ...

*sin~(2* (xnow (5) +TA)) ;
dtemp=3*J2/ (2*sernilatA2) * (/xnow (2)* ...

((1-3/2*sin (xnow (3) )A 2) *sinTA-...
1/4*sin (xnow (3) ) 2*s(2*xnow (5) +TA) +...

7/12*sin (xnow (3) )A 2*sin(2*xnow(5)+3*"LA))±..
1/2* ((1-3/2*sin (xnow (3) )A 2)*sin(2*TA) -..
(1-5/2*sin (xlow (3) )A "2) *sjfl(2* (xnow(S)-'TA))-4...
3/8*sin (xnow (3) )A "2sin (2*xnow (5) +4*TA) ) );

domper~d-.emp;
dMAper=dnewper-,:omper;
varper=[daper;deper;di-per;dOMper;domper;dM!Aperl;
xper=xnow+varper;

EAper=enewton(xper(6) ,xper(6) ,xper (2));
cosTAper= (cos (EAper) -xper (2) )/ (1-xper (2)*cos(EAp.er) );
sir-.TAper=sort(l-xper(2)V2)*sin(EAper)/(l-xp~er(2)..

*cos~(EAper)) ;
rper=xper (2) * (-xper (2) "2) / (+xper (2) *cosTLAt~er);

TAper=twopi (asin (sinTAer)e -);
if TAper<pi

if cosTAper<C
TAper=pi-TAper; % Performr quadrant check

end~ for true anomaly.
else

if cosTAper<O
TAper=3*pi-TAper;

end
end

% RECALCULATE PERIODIC TRANSFORMATION MATRIX *

Plper=cos (xper (5) )*co(xper (4) )-...
sin (xper (5))*sin (xper (4))*cos(xper (3));

P2per=-sin (xper (5))*cos(xper (4))-...
cos (xper (5))*sin (xper (4))*cos(xper (3));

P4per=cos (xper (5) ) *sji(xper (4) )+...
sin (xper (5)) *~co(xper (4))*cos(xper (3));

P5per=-sin (xper (5) ) *sji(xper (4)) ...
+cos (xper (5))*cos(xper (4))*cos(xper (3));
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P-7per=sin (xper (5) ) *sji(xper (3));
P8per=cos (xper (5) )*5Th (xper (3));
stýuff=si-nfinc*earthrot-*xper (l1)l.5*rper* ..

cosTAper* (Plper* sin (theta) ...
-P4per*cos (theta)) +sinfinc*earthrot*xper (1) ".* .~...

rper*sinTAper* (P2per*sin (theta) -P5per* ...
cos (theta) )+xper(l)/(1-xper(2)*cos(EAper))* ...
(-sin (EAper) * (sinfinc*Plper*cos (theta) -..
sinfinc*P4p~er* sin (thet'a) +cosfi-nc*P7per) -'-.

sqrt (l-xper (2) "2)*cos(EAper) * (sinfinc*P2per* ...
cos (thetLa) -sinfinc*P5per*sin (theta) +cosfirncýP8per) );

zfence=.0031+ (-sinfinc*coS (theta) *Plper-sinfinc* .
sin (theta) *P4per+cosfinc*P7per) *rper* ...
cosTAper+ (-sinfinc*cos (theta) *P2per ...
-sirifinc*sin (theta) *P5per+cosfinc*P8per)* *.
rper*sinTAper;

cielMA=-z fence/stuff;
rnmrot.-ion~xnow(2.)"(-3/2);
dei'2-T=delYMA/mnmotion;

?R~PGATEMEAN ORBITAL ELEMENTS TO ITERATIVE VALUE or TTME *

xnow (6) =twopi (xnow (6) 4delM.A);
Enow~enewton (xnow (6),xnow (6),xnow (2) )
TAold=TA;
cosTA= (cos (Enow) -xnow (2) )/ (l-xnow (2)*cos(Enow)) ;
sinTA=scrt(1-xnow(2)^2)*sin(Enow)/(l--xnow(2)..

*cco (Enow)) ;
r=xnow(l) *(l-xnow (2) "2) / (+xnow (2) *cosTA) ;

TA~twopi (asin (sinTA));
if TA<pi

if cosTA<O
TA=pi-TA; % Perform quadrant check

end % for true anorraly.
else

if cosTA<O
TA=3*pi-TA;

end
end

* APPLY SECULAR VARIATIONS TO omega & OMEGA *

delTA=TA-TAold;
if delTA>pi/2
delTA=delTA-2*pi;

end
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if delTA<-pi/?
delTA=delTA+2",pi;

end
sernilat=xnow(l) * (-xnow(2) A2);
Ql=-3*J2/semilat"2;

SOMEGA=Q1*co5(xnow (3) )/2;
Somega=-Ql* (2-5I2*sin (xnow (3) ) 2) /2;
del sOMEGA=SOMEGA*delTA;
delsornega=Sornega*delTA;
xnow (4) =xnow (4) +delsOMEGA;
xnow (5) =xnow (5) +delsomega;

*CALCULATE ATMOSPHERIC DENSITY*

k2=3e-6;
k3=21./6378 .135;
atmdens=k2*exp ((1--r)/k3);

*APPLY DRAG PERTURPATIONS TO a & e*

k=46378 .135;
deldrag=(k1*xr t)A2*(1+xnow(2))*atmer-s~cie2'-t'%s:;

kl*xnw(1)*(l-xnow(2)V2)*atrnens*cielTAsec-;

xnow=xnow+deldrag;

*RECALCULATE TRANSFORMATION MATRIX (ORBITAL TO INER:T17L)

P1=cos (xnow (5))*cos(xnow(4) )-..
Sin (xnow (5) )*sinj(xnow (4) )*co(xnow (3)) ;

P2=-sin (xn-ow (5) )* o(xnow (4) )-...
Cos (xnow (5) ) *sin(xnow (4) )*co(xnow (3)) ;

P4=cos (xnow (5) ) *sji-(xnow (4) )+...
sin (xnow(5) )*co(xnow(4) )*co(xriow(3)) ;

P5=-sin (xnow(5) )*sin(xnow(4) )+...

cos (xnow(5) ) *cog(xnow(4) )*co(xnow(3));
P7=sin (xnow (5))*sin(xnow (3));
P8=cos (xnow (5))*sin(xnow (3));

% IMPLEMENT TIME CORRECTION *

delT=delT+del2T;
theta=twopi (earthrot* (Tgriwch+delT) +lonx);

end

% UPDATE ACTUAL TIME OF INTERSECTION *
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Tgnwch=Tgnwch+delT;
Tfilter=Tfnilter+delT;
T=T+de 17;
xnow~xnow';

* CALCULATE FENCE-PLANE COORDINATES

x= (cosfinc*cos (theta) *Pl+cosffinc*sin (theta) *P4+..
sinfinc*P7) *r*cosTA+ (cosfinc*cos (theta) .......
cosfinc*sin(theta)*P5+sinfinc*P8)*r*sinTA;

y= (-sin (theta) *Pl+cos (theta) *P4) *r*cosTA..
+ (-sin (theta) *P2+cos (theta) *P5) *r*sinTA;

DETERM~INE WHETHER ANY RCVR MAY BE ABLE TO OBSERVE SATELLITE*

if x/sqrt(x^2+y^2)>=cos(40*pi/18O)
flag~1

end
z fence:=O;

Eccentric Anomaly Iteration

fun~ction [EA] =Enewton (EA, MA, e)

if MA<EA
if EA>1.5'*pi

MA=MAI+2*pi;
end

end
errE=1;

while abs (errE) >=1e-1O
errE=EA-e* sin (BA) -MA;
delEA= (-1/ (1e*cos (EA) ) )*errE;
EA=twopi (EA+de lEA);
MA=twopi (MA);

end
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Anr'ý Between 0 & 21r

% This function will take any angle (in radians) and
calculate
% its equivalent between zero and 2*pi

function phi=twopi (phi)

if phi>=2*pi
while phi>=2*pi

phi=phi-2*pi;
end

else
while phi.'O

phi=phi+2*pi;
end

end
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